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Instability of a viscous fluid of variable density 
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The instability to small two-dimensional disturbances of an electrically con- 
ducting fluid of variable density is investigated. The viscous fluid is bounded 
between two vertical parallel planes normal to which a magnetic field of constant 
intensity is applied. Significant parameters upon which the behaviour of the 
Rayleigh number at neutral stability depends are the Hartmann number 
M and the wave-number 01 which is associated with a periodic disturbance with 
periodicity in the unbounded horizontal direction. 

The solution may be sought by considering basic disturbances which are 
either symmetric or antisymmetric about the median plane parallel to the 
boundary planes. It is found that for a given magnetic field strength the critical 
Rayleigh number governing stability is associated with an antisymmetric 
disturbance of zero wave-number. The least stable symmetric disturbance 
which arises when the wave-number is zero is less easily excited. This trend 
is seen again in the purely hydrodynamic case ( M  = 0) where, corresponding to 
a finite wave-number value, the more unstable mode at neutral stability is found 
t o  be an antisymmetric one. 

The most unstable situation occurs when both the Hartmann number and 
the wave number are zero. In  this case the result of Wooding (1960) that the 
minimum critical Rayleigh number is zero and is associated with a symmetric 
disturbance is reobtained. 

1. Introduction 
Exact solutions of the instability to small two-dimensional disturbances of 

a viscous variable density fluid bounded by parallel vertical planes have been 
obtained by Ostrach (1955) and Yih (1959) the last mentioned citing the previous 
work of Taylor (1954) in this connexion. Both authors have considered the bound- 
ing planes to be insulated with the fluid subjected to a negative upward tem- 
perature gradient. Yih has shown that, if disturbances which are periodic in the 
vertical direction with wave number y are assumed, then the most unstable 
modes are associated with a zero wave-number. Further the trend of his results 
indicated that a disturbance exhibiting antisymmetry about the vertical median 
plane would be more readily excited for a stated wave-number than one having a 
similar property of symmetry. Corresponding to an antisymmetric mode of zero 
wave-number he therefore obtained the value R = 31.29 for the overall critical 
Rayleigh number at  neutral stability. For the most unstable symmetric dis- 
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turbance Yih and Ostrach have both given the value R = 337.6. However, 
Wooding (1960), who reinvestigated the problem in connexion with the stability 
of a variable density liquid in a porous medium, found that a two-dimensional 
symmetric disturbance with variation confined to any horizontal plane (i.e. 
with y = 0) and periodic with wave-number a parallel to the bounding planes 
furnished a more unstable mode than either of those mentioned above. In case 
CL is small and significant only to a first power he obtained a zero value for the 
critical Rayleigh number in association with a vertical velocity component of 
plane parabolic profile and of magnitude proportional to a first power of a. 
A physical interpretation of this result which is anomalous to the general trend 
of critical Rayleigh number values indicated by the results of Yih has been 
offered by Wooding. 

The present investigation is concerned with the stability of a column of viscous 
electrically conducting fluid bounded by two parallel vertical planes normal 
to which a uniform magnetic field is applied. The planes are thermally insulated 
and the fluid is heated from below. The relevant equations of motion and thermal 
energy transport use the standard Boussinesq approximation provided that the 
temperature difference between any two points of the fluid is moderate in the 
sense that #(TI - T,) < 1 where q5 is the coeBcient of thermal expansion. Density 
variations are therefore small and the only effect of these which may not be 
ignored is on the body force per unit volume due to gravity since this is the sole 
cause of instability. For onset of convection the linearized governing equations 
are reduced to their simplest two-dimensional form by assuming that the 
velocity field comprises only one component which is in the upward direction. 

The principle of exchange of stabilities, i.e. that instability sets in as time- 
independent convection, is shown to be valid for the problem which reduces 
to the solution of a transcendental equation of simple form. Of particular interest 
is the effect of the magnetic field on the most unstable mode discovered by Wood- 
ing. In fact there is no evidence of this mode when the fluid is electrically 
conducting. 

2. Basic equations 

those governing the velocity and temperature, viz. 
In  a standard notation employing emu and cgs units the basic equations are 

P (:+ v .  Vv) = - Vp + vV. (pVv) + p g  + F, 

?+V.(pv) at = 0, 

(2.1) 

(2.2) 

(2.3) 

together with the electromagnetic equations 

and Ohm’s law for the moving field 
J = o(E +PV x H). (2.7) 
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Viscous and electrical dissipations have been neglected in (2.3) and F in (2.1) 
represents the induced magnetic force per unit volume. 

Cartesian co-ordinates (x, y, z )  are used with z measured in the vertical direc- 
tion. The vertical bounding planes are parallel to the (y, 2)-plane and intersect 
the x-axis at x = g d .  Normal to the planes, i.e. in the direction of the x-axis 
a uniform magnetic field of indensity Ho is applied. 

An equation of state valid for small temperature differences can be written 

P = POP - $(T - Toll 
in which q5 is the coefficient of thermal expansion and po and To are respectively 
the fluid density and temperature at  the chosen origin. The coefficient q5 is small- 
for mercury at  room temperature (20 "C) it is 1.82 x 10-4-and in general may be 
considered not greater than so that for moderate temperature differences 
the variation in the density p is everywhere slight. In the primary static state 
one has (2.8) 

where ,5 is the (negative) upward temperature gradient. With convection present 
the perturbations from the initial state described by the equations (2.8) are 
suitably denoted by v, T', p', p', H and these are small quantities significant 
only to a first order. On the Boussinesq approximation that density variations 
are felt only in relation to the gravitational body force, equations (2.1) to (2.3) 
using (2.8) can be expressed in the linearized forms 

av 1 1 
- = -- Vp'+ vv2v+- F +  (0, 0, f$gT'), 
at Po PO 

v . v  = 0, (2.10) 

- = KV2T' -Pw, aTi 
at 

(2.11) 

where w appearing in (3.1 1) is the component of v in the upward direction. 
Consistent with the governing equations and boundary conditions we assume 

that the velocity field has only one non-zero component w, and that Hz is the 
only component of the induced magnetic field. From (2.10) and (2.4) therefore 
the total velocity and magnetic fields are given by 

(2.12) I u = 2, = 0, w = w(x, y ) ,  
H, = H,, H, = 0,  H, = H,(x,Y). 

The equation (2.5) then affords the components of the current density 

(2.13) 

whence the components of the magnetic force F = ,rd x H in (2.9) are found to 
be 

The first two equations of (2.14) show that Fx and Fu are quadratic in H, and 
so vanish to the first order. It is now possible to write down the governing equa- 
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tions in their final forms. If V 2  = a2/ax2+a2/ay2, the equations (2.9) and (2.11) 
for the velocity and temperature distributions become respectively 

(2.15) 

The linearized equation for the variable magnetic field component H, is 

(2.17) 

which is derived from the equations (2.4) to (2.7) together with (2.10). In addition 
to  (3.15) the equation (2.9) gives the further equations 0 = pG1(api/ax) and 
0 = p;l(ap'/ay) from which it is clear that ap'l8.z in (2.15) although functional 
in time is independent of the space variables. Finally, since there is no heat 
transmission through the vertical planes at  which a tangential discontinuity of 
the magnetic field is inadmissible, the boundary conditions are 

w = 0, H,= 0, aT'/ax= 0 at x = + d .  (2.18) 

The equations (2.15) to  (2.18) may be rendered dimensionless by the trans- 

H = vt/d2, X = x/d, Fj = y/d, = T'/bd, W = wd/K and gs = Hz/Ho. 

formations 

Substituting these and immediately dropping bars one obtains 

(2.19) 

(2.20) 
aT 

Pr  - = V2T - w, 
at 

and aHz aw 
at ax 

Pr-- = qV2Hz+- (2.21) 

in place of (2.15), (2.16) and (2.17). Here Pr = v/K is the Prandtl number, 
R = - $gpdd/Kv the Rayleigh number, M2 = vp2H$P/po v the Hartmann 
number squared and y = (47rpgK)-l is the ratio of magnetic diffusivity to thermal 
diffusivity of the fluid. 

These equations permit the separable solutions 
w = V ( x ,  y )  e*l, T = O(z, y )  eAt, H, = H ( x ,  y )  eht, ap'/ax = Peh6, (2.22) 

in which h is assumed complex and P is a constant. The separated equations 
(2.19) to (2.21) then become 

Pd2 aH 
hV = ---RO+V2V+yM2-, 

Po vh' ax 
(2.23) 

PrhO = V20- V ,  (2.24) 

(2.25) 
av 
ax 

PrhH = qV2H+-, 

with boundary conditions from (2.18) 

V = 0, H = 0, af3/ax = 0 at x = & 1.  (2.26) 
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3. Solution 
Provided the principle of exchange of stabilities is valid, the imaginary as 

well as the real part of h may be equated to zero at  neutral stability. It is con- 
venient to defer until later a proof of the principle in the present instance and 
for the time being to assume that it holds. The elimination of 8 and H between 
the equations (2.23), (2.24) and (2.25) then results in the equation 

and if a disturbance of the form 

is assumed, (3.1) in turn leads to 

[(D2-~2)2-M2D2]f = Rf, (3.3) 

in which D E d/dx. In  virtue of the conditions (2.26), one has at  the boundaries 

V 2 ( 2 V / 2 ~ )  = -qM2(22H/2~2), 
from (2.23) and q(22B/2x2) = - 2 v/2x 

from (2.25). Combining (3.4) and (3.5) gives 

( ~ 2 -  ~ 2 )  2vlaz = 0. 

The boundary conditions on f(x) obtained from (2.26) and (3.6) are therefore 

f(x) = 0, (02-a2-M2)Df = 0 at x = f 1. (3.7) 

f(x) = CBicosh€ix+CCisinhsix (i = 1,2) ,  (3.8) 

The equation (3.3) has the solution 

i i 

where t$ - a2 = wi (i = 1,2) are the roots of the quadratic equation 

u~-M%-M%'-R = 0. 
Thus, for the q, we have 

and it is evident from these expressions that 

(2) = 0, (3) = 0 (i = 1,2) .  
a=O aM n1=0 

(3.9) 

(3.10) 

Inview of the linear homogeneous character of (3.3) the general solution 
(3.8) may be separated into its even and odd components and these investigated 
individually. They will correspond respectively to velocity perturbations 
which are symmetric and antisymmetric about the median plane x = 0. 
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secular eauation 
If the motion is antisymmetric the boundary conditions (3.7) afford the 

from which R values may be obtained for prescribed M and a at neutral stability. 
This relationship (3.11) provides a real equation since the determinant after 
expansion has terms which are of odd order in e2 which is pure imaginary when 
R is its dominant parameter. It is clear that if the determinant in (3.11) is 
differentiated with respect to M the result is the sum of two determinants each 
having a row (column) of elements containing one or other of the factors 

&,/iiM (i = 1,2).  

A similar conclusion holds if the differentiation is performed with respect to a 
only this time one or other of the factors ae,/iicl (i = 1,2)  is contained by each 
element of a row (column) of the derived determinants. Differentiating the 
equation (3.11) one obtains the results 

__ iiR = -ElaF and 
aM aM aR acl 

whence it follows immediately using (3.10) that 
(8R/8M),=, = 0 and (aR/aa),,, = 0. 

That these provide criteria for minimizing R seems assured since the stability 
of the fluid would be increased by magnetic and viscous stress if M and a are 
increased from zero. 

In  regard to symmetric motion, the secular equation 

(3.12) 
cosh el cosh e2 

(€21 - a2 - M 2 )  el sinh el (E;  - a2 - M 2 )  e2 sinh e2 

is obtain.ed from the boundary conditions (3.7). The above conclusions can 
be repeated here in relation to (3.12) and are therefore universally true. 

The task of finding critical Rayleigh numbers is now very much simpler. 
One can say that for a disturbance of given wave-number a, the most critical 
situation arises when the fluid is electrically non-conducting. Alternatively 
one can conclude that for a given magnetic field strength the most critical 
Rayleigh number corresponds to a zero wave-number. 

Of particular interest in case of either symmetric or antisymmetric motion 
are (i) the variation of critical Rayleigh number with wave-number when the 
Hartmann number M is zero and (ii) the behaviour of the critical Rayleigh 
number with Hartmann number when the fluid is electrically conducting. In  
view of what has been said above a is taken to be zero if M =k 0 in the latter case. 

Case (i), M = 0 

Here the evaluation of the secular equations (3.11) and (3.13) lead to the trans- 
cendental equations 

(3.13) 
tanh (I?$ - a2)h  tanh (I?& + a2)* 

- + ____._____ ~ 

(Rh-a2)* (R$+az)h = 
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for antisymmetric convection, and 

(R* + a2)i tanh (Ri + a2)i) - (R) - &!)*tan (Ri) - $)i) = 0 (3.14) 

for symmetric convection. 
Corresponding to a = 0 it is then possible to calculate the most critical Rayleigh 

number appropriate to either mode of convection from the respective equations 

and 
R-f(tanh Ra + tan Ra) = 0, 

R i  (tanh R) - tan R*) = 0. 

(3.15) 

(3.16) 

The least values of R satisfying these are respectively R = 31.285 and R = 0. 

R 
I 

A > 
Antisymmetric Symmetric 

CI convection convection 

0 31.285 0 
0.5 35.216 247.47 
1.0 47.832 277.43 
2.5 170.10 519.01 
3.0 257.40 668.19 

TABLE 1. Critical values of R for given a: (M = 0). 

Previously Yih (1959) had obtained the equations 

tanh R i  + tan Rf = 0 (3.17) 

and tanh Rf - tan R i  = 0 (3.18) 

of which he gave the solutions R = 31.29 and R = 237.6. The former number 
had been given as the critical Rayleigh number governing stability by Yih 
(1959) (later corrected 1960) whilst earlier Ostrach (1955) had quoted the latter. 
However, Wooding (1960) after expanding R in ascending powers of a2 for small 
a values found that the leading term of the expansion satisfied either (3.15) or 
(3.16) according as the disturbance was an antisymmetric or a symmetric one. 
Corresponding to a modal velocity distribution of the symmetric form 

V ( X ,  y )  = [ - 3 4 4  1 - x 2 ) ]  cos UY, (3.19) 

he obtained a critical Rayleigh number which was zero to a second order in a. 
This instability which occurs at the limit of zero wave-number is anomalous 
to the general trend of results for finite wave-numbers as given by Yih (1959) 
or, in the present instance, by table 1 which shows the more critical mode 
for a given wave-number to be an antisymmetric one. A physical explanation 
of this behaviour has been offered by Wooding and is based on the very small 
variation, on account of the factor a, of the velocity profile (3.19). 

The critical values of the Rayleigh number found from (3.13) and (3.14) 
for stated wave-numbers are displayed in table 1. 

The Rayleigh numbers shown in table 1 are ‘more critical ’ than the results 
for wave-numbers in the vertical direction obtained by Yih (1959). This is 
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increasingly the case for the larger wave-numbers. The corresponding curves 
for neutral stability, together with Yih’s for comparison, are plotted in figures 1 
and 2. 

_------ -_-- -- 
-C - - ___--- 

--I- 

I 1 I I I I 
OO 100 200 300 400 500 600 1 

R 
0 

FIUURE 1. Neutral stability curve for antisymmetric convection ( M  = 0).  
Yih’s curve is shown as broken line. 

0 

R 

FIGTJRE 2. Neutral stability curve for symmetric convection ( M  = 0). 
Yih’s curve is shown as broken line. 

Case (ii), M $. 0 
In  this case the critical Rayleigh number appropriate to a mode of convection 

may be evaluated upon setting cc. = 0 in the secular equations (3.11) and (3.12). 
These then reduce to the respective forms 

@ tanh (3k)a + g4 tan (*{)a = 0, 

6-4 tanh (*t)* - g-* tan ($[)a = 0, 

(3.20) 

(3.21) and 

in which 6 = (M4 + 4R)4 + M2, g = (M4 + 4R)Q - M2. 
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The solutions of (3.20) and (3.21) for varying M are given in table 2, and the 
neutral stability curves for antisymmetric and symmetric convections are shown 
in figures 3 and 4. 

Evidently R = 0 is not a possible solution of either equation in case M =k 0 
and it can be concluded that there is no buoyancy force of the previous small 

OO 

Stable 

I t  I I 1 I I 
200 400 600 800 loo0 1200 1400 

Unstable 

R 

FIUURE 3. Neutral stability curve for antisymmetric convection of zero wave-number. 

2c 

16 

12 

M 

a 

4 

Stable 

FIGURE 4. Neutral stability curve for symmetric convection of zero 
wave-number. 
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scale which could excite a convection current in face of the stabilizing effect of 
combined viscous and magnetic stresses. Further the results in table 2 indicate 
that the fluid is more stable to symmetric than to antisymmetric disturbances. 

111 
0 
2 
4 
6 

10 
20 
co 

R 

Antisymmetric 
convection 

31.285 
43.476 
79.037 

136.27 
312.16 

1100.4 
( k 7 T M ) z  

Symmetric 
convection 

0 
283.62 
419.73 
642.7 1 

1338.3 
4483.3 
(nlC1)2 

TABLE 2. Values of R for given M(a = 0). 

4. The principle of exchange of stabilities 
It has been assumed so far that instability sets in as a steady cellular con- 

vection from rest and the possibility of instability (overstability) growing 
out of existing oscillations has been excluded. It should therefore be shown 
that the imaginary part of h in the separated solutions (2.22) is zero at neutral 
stability . 

If the equation (2.23) is operated upon by (Prh- V2) (Prh- yV2) it  is possible 
on using (2.24) and (2.25) to eliminate 8 and H and thus obtain the equation 

a v  
ax2 

(Prh - V2) (Prh - 7V2) ( A  - V2) V = (PYA - 7V2) R V + yM2(Prh - V2) -- . 
(4.1) 

The character of (4.1) which is linear and homogeneous in V makes it permissible 
to consider in general a modal solution of the appropriate form 

V ( X ,  y) = cash E X  cos ay, (4.2) 

in which E may be either real or pure imaginary. The substitution of (4.2) into 
(4.1) then yields 

[Prh- (s2 - a2)] [PYA - 7(c2 - a')] [ A  - (c3 - a2)] = [PYA - 7(c2 - a2)] R 
+ yM2[Prh - (€2 - a2)] w2, 

which can be multiplied out and rearranged in powers of A to become 

Pr2h3 - h2[ (€2 - a2) Pr{ 1 + y + Pr}] + A[ (€2 - ~ 1 . ~ ) ~  {Pr + yPr + y} - PrR - yM2Prs2] 
- [ y ( ~ 2 - a 2 ) { ( ~ 2 - a 2 ) 2 - R - M ~ ~ ~ } ]  = 0. (4.3) 

If now h in (4.3) is replaced by ip and the real and imaginary parts of the resulting 
equation are set equal to zero one has 

- Pr2p2 + [ (€2 - a2)2 {Pr + yPr + y} - PrR - yM2Prs2] = 0, (4.4) 

and p 2 [ P ~ { l + ~ + P r } ] - [ ~ { ( ~ 2 - a 2 ) 2 - R - M ~ ~ ~ } ]  = 0. (4.5) 
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A single equation for u.2 can be obtained from (4.4) and (4.5) by eliminating 
the factor (€2-  $)2 which is common to both. One has from (4.5) that 

Substituting into (4.4) using this expression for (e2 - then gives 

p2[( 1 + 7-l) Pr (Pr2 + (1 + 7) Pr + s}] + 7R( 1 + Pr) + s2M2(Pr + 7) = 0. (4.6) 

Two cases require individual attention according as E is real or imaginary. 
If €2 > 0 i t  is clear from (4.6) that p cannot be real unless possibly R were negative 
in which case the temperature gradient /3 would increase upwards and the fluid 
would evidently be stable. In  case s2 < 0 the terms independent of p2 in (4.6) can 
still be shown to be positive for positive R. As a preliminary it is first useful 
to notice that e2M2(Pr+q) with e2 defined by the second of equations (3.9) is 
more and more negative with increasing M .  It is therefore sufficient to consider 
only large field strengths in which event it is certainly true (cf. table 3)  that 
RIM4 4 1. Thus for large M the expression 

€2 = &[M2 - H2( 1 + 4a2/M2 + 4R/M4)t] + 
can be expanded to give 

which in turn enables one to write 

e2 = - R / N 2  + O(R2/M6), 

M2s2(q + Pr) + qR( 1 + P r )  = PrR(q - 1)  + O(R2/N4).  (4.7) 

From (4.7) it  follows that p cannot be real if 7 > 1 since then the terms inde- 
pendent of p2 in (4.6) have a positive sum. The more restrictive condition neces- 
sary to ensure a real p arises therefore in connexion with €2 < 0 and in consequence 
the validity of the principle of exchange of stabilities is assured where 7 > 1. 
This condition is not a restrictive one on a laboratory scale. 

In  conclusion the author would like to thank the Department of Applied 
Mathematics at the Queen’s University, Belfast for the use of their DEUCE 
digital computer on which the numerjcal calculations involved in the course of 
this work were performed. 

R E F E R E N C E S  

OSTRACH, S .  1955 50 Jahre Grenzschichtforschung. Verlag Friedr. Vieweg und Sohn. 
TAYLOR, G. I. 1954 Proc. Phys. Soc. B, 67, 868. 
WOODING, R. A. 1960 J. Fluid Mech. 7, 501. 
YIH, C.-S. 1959 Quart. Appl .  Math. 17, 25. 
YIH, C.-S. 1960 Quart. Appl. Math. 18, 300. 

8 Fluid Mech. 20 




